

Outline

- Cyclotron Basics
- [classic cyclotron, isochronous sector cyclotron, resonators, extraction, space charge and loss scaling]
- PSI Experience
- [facility overview, loss handling, power conversion efficiency, reliability and trip statistics, targets]
- Developments / Paper Studies
- [PSI upgrade program, 10MW cyclotron]
- Discussion
- [advantages and drawbacks of cyclotron accelerators]

Classical Cyclotron

- → two capacitive electrodes "Dees", two gaps per turn
- → internal ion source
- → critical: vertical beam focusing by transverse variation of bending field

$$Q_{y} = \left(-\frac{r}{B}\frac{dB}{dr}\right)^{1/2}$$

but isochronous condition for relativistic ions requires positive slope...

advantage:

- → CW operation
- → periodic acceleration, i.e. multiple usage of accelerating voltage

today: Sector Cyclotrons

- edge+sector focusing, i.e. spiral magnet boundaries (angle ξ), azimuthally varying B-field (flutter F) $Q_v^2 \approx n + F (1+2 \cdot tan^2(\xi))$
- modular layout (spiral shaped sector magnets, box resonators)
- electrostatic elements for extraction / external injection
- radially wide vacuum chamber; inflatable seals
- detailed field shaping for focusing and isochronisity required
- strength: CW acceleration; high extraction efficiency possible: $99.98\% = (1 - 2 \cdot 10^{-4})$
- limitation: kin.Energy ≤ 1GeV, because of relativistic effects

Cyclotron Examples

Name / Lab	K [MeV]	P [kW]	
Cyclone 14 SEC (IBA)	14	70	protons for isotope production
TRIUMF Cyclotron	520	100	18m diameter
PSI Ring-Cyclotron	592	1300	optimized for power, 15m diameter
Superconducting Ring Cyclotron / RIKEN	2600	1 (86Kr)	6 sc. Magnets @ 3.8T, ions e.g. 86Kr, 238U

K-Value / bending limit: maximum kinetic energy [MeV] for protons in non-relativistic regime; typical names: *K300-Cyclotron*

 $(E_k/A) = K \cdot (Z/A)^2$

PSI Ring Cyclotron

8 Sector Magnets: 1 T

Magnet weight: ~250 tons

4 Accelerator Cavities: 850 kV (1.2 MV)

1 Flat-Top Resonator 150 MHz

correction coil circuits: 15

Accelerator frequency: 50.63 MHz

harmonic number: 6

kinetic beam energy: 72 → 590 MeV

beam current max.: 2.2 mA

extraction orbit radius: 4.5 m

outer diameter: 15 m

relative Losses @ 2mA: -~1..2·10⁻⁴

transmitted power: 0.26-0.39

MW/Res.

major component: RF Resonators for Ring Cyclotron

- the shown Cu Resonators have replaced the original Al resonators
 [less wall losses, higher gap voltage possible, better cooling distribution, better vacuum seals]
- f = 50.6 MHz; $Q_0 = 4.10^4$; $U_{max} = 1.2 MV$ (presently $0.85 MV \rightarrow 186$ turns in cyclotron, goal for 3mA: 165 turns)
- transfer of up to 400kW power to the beam per cavity
- deformation from air pressure ~20mm; hydraulic tuning devices in feedback loop → regulation precision ~10μm
- → very good experience so far

Ring Cyclotron Resonators cont.

hydraulic tuning

critical for losses/trips: electrostatic elements

parameters extraction chan.:

 $E_k = 590 MeV$

E = 8.8 MV/m

 θ = 8.2 mrad

 ρ = 115 m

U = 144 kV

major loss mechanism is scattering in 50μ m electrode!

space charge at high intensity

- intensity is limited by losses, caused by space charge beam blow-up
- losses \propto [turns]³ \propto [charge density (sector model)] \times [accel. time] / [turn separation] (W.Joho)
- new components: resonators 4 in Ring, 2 in Injector; harmonic bunchers: 3'rd harmonic for Injector; 10'th harmonic for Ring

new regime: "round beam" with short bunches

idealized model for illustration:

protons in the field of a round, short bunch + vertically oriented magnetic field (neglect relativistic effects and focusing)

[Chasman & Baltz (1984)]

though the force is repulsive a "bound motion" is established

→ for short bunches a round beam shape is formed

→ a round beam is observed in the Injector II cyclotron

round beam simulation

study of beam dynamics in PSI Ring Cyclotron

→ goal: behavior of short bunches; effect of new 10'th harmonic (500MHz) buncher

Plot: distribution after 100 turns varying initial bunch length

- -multiparticle simulations
- -10⁵ macroparticles
- precise field-map
- bunch dimensions:

 $\sigma_{z} \sim 2$, 6, 10 mm; $\sigma_{xv} \sim 10$ mm

→ reduce bunchlength! 500MHz buncher under commissioning; reduction of flat-top voltage seems possible

Overview PSI Facility

history max. current of the PSI accelerator

High Power Proton Accelerators

FED

Grid to Beam Power Conversion Efficiency

for industrial application, transmutation etc., the aspect of **efficient usage of grid power** is very important

PSI: ~10MW Grid → 1.3MW Beam

$$P_{\text{grid}}(I) \approx (8.0 \pm 0.5) \text{MW} + 0.81 \text{MW} \cdot I[\text{mA}]$$

contains many loads not needed for ADS!

► differential measurement of electrical power vs. beam power (total PSI power shown)

Particle losses along the accelerator

Accelerator Section	kin. energy [MeV]	max.loss [μΑ]	typ. loss [μΑ]
Injector II, extraction	72	5	0.3
collimator FX5 (shielded)	72	10	5
transport channel II (35m)	72	0.1	
Ring Cyc., Injection	72	2	0.3
Ring Cyc., Extraction	590	2	~0.4
transport channel III	590	0.1	0.02 (est)
target E+M (shielded)	590	30%	30%
transport channel IV	575	0.1	
SINQ target (shielded)	575	70%	70%

Ringzyklotron 570 MeV

acceptable for service:

~ 2·10⁻⁴ relative losses per location (@590MeV)

losses in Ringcyclotron reduced by turn number reduction

absolute loss (nA) and rel. loss in Ring Cyclotron as a function of current

last improvements:

gap voltage increase: 780kV → 850kV

turn number reduction: 202 → 186

figure shows absolute losses for optimized machine setup

component activation – Ring Cyclotron

activation level allows for necessary service/repair work

- personnel dose for typical repair mission 50-300μSv
- optimization by adapted local shielding measures; shielded service boxes for exchange of activated components
- detailed planning of shutdown work

activation map of Ring Cyclotron

(EEC = electrostatic ejection channel)

personal dose for 3 month shutdown (2008):

57mSv, 188 persons max: 2.6mSv

cool down times for service:

 $2200 \rightarrow 1700 \,\mu\text{A}$ for 2h

 $0 \mu A$ for 2h

map interpolated from ~30 measured locations

reliability: statistics of run- and interruption periods

- → cyclotron operation is typically distorted by short (30sec) interruptions from trips of electrostatic elements or beam-loss interlocks
- → significant improvement with reduced turns (new Reson.) was observed in 2008

in the discussion on application of cyclotrons for **ADS** systems the frequency of interruptions is of major interest

statistics of beam trips 07/08

- → histogram for occurrence of interruptions as function of duration, integrated from right; average number per day; comparison 2007/2008
- → high reliability is important for our users and for other potential high power applications of cyclotrons

total number of interrupts per day [integrated histogr.]

read this plot as follows:

there are typically *n* trips per day that last longer than *t*

Spallation Target Expertise at PSI

Meson Production Target

TARGET CONE

Mean diameter: **450 mm**Graphite density: 1.8 g/cm³
Operating Temp.: **1700 K**Irrad. damage rate: 0.1 dpa/Ah

Rotation Speed: 1 Turn/s
Target thickness: 40 mm

7 g/cm²

Beam loss: 12 %

Power deposit.: 20 kW/mA

Muon Transport Channel μE4

Muon Rate:

4.6E8 μ+/sec

@ p=29.8 MeV/c

Channel μE4

target, d=40mm

solenoids

quadrupoles

T.Prokscha et al NIM-A (2008)

FED

Cyclotron Upgrade – fast acceleration, short bunches!

- goal: 2.2mA → 3mA [1.8MW]
- philosophy: keep absolute losses constant
- higher gap voltages → faster acceleration → reduce space charge effects
- short bunches → less tail generation

measures:

- → new resonators in Ring Cyclotron [done!]
- → 10'th harmonic buncher before Ring [under commissioning]
- → new ECR ion source [expected for 2010]
- → new resonators in Injector II (replace flattops) [expected for 2012]
- → new RF amplifiers for all four resonators in Injector II [expected for 2012]
- → replace absorbers behind 4cm Meson Prod. Target [expected for 2013]

New 50 MHz Resonator 2&4, Injector 2

Specification

Resonance frequency: 50.6328 MHz

Accelerating voltage: 400 keV

Dissipated power: 45 kW@400kV

Tuning range: 200 kHz

Cavity RF-wall: EN AW 1050

Structure: EN AW 5083

Vacuum pressure: 1e-6 mbar

Cooling water flow: 15 m3/h

Dimension: 5.6x3.3x3.0 m

Weight: 7'000 kg

M.Bopp, PSI; company: **SDMS**/France

amplifiers and resonators for the Injector II Cyclotron

power supplie

Plate power supplie **Amplifiers**

[M.Schneider]

new annex

Parameter Set for a 10 MW Cyclotron

[1997, Th.Stammbach et al]

parameters	1 GeV Ring	PSI Ring
Energy	1000 MeV	590 MeV
Injection energy	120 MeV	72 MeV
Magnets	12 (B _{max} = 2.1 T)	8 (B _{max} = 1.1 T)
Cavities	8 (1000 kV)	4 (800 kV)
Frequency	44.2 MHz	50.63 MHz
Flat tops	2 (650 kV)	1 (460 kV)
Injection radius	2.9 m	2.1 m
Extraction radius	5700 mm	4462 mm
Number of turns	140	186
Energy gain at extraction	6.3 MeV	2.4 MeV
DR/dn	11 mm	5.7 mm
Turn separation	7 s	7 s
Space charge limit	10 mA	2.2 mA (3.0 @ 4 MV/turn)
Beam power	10 MW	1.3 MW

lastly:

Discussion and Summary

[advantages and drawbacks of cyclotron accelerators]

Discussion

pro and contra cyclotron

efficient power transfer

only few resonators and amplifiers needed

con: • injection/extraction critical

energy limited to 1GeV

complicated bending magnets

elaborate tuning required

other: • naturally CW operation

Summary

- the cyclotron concept presents an effective option to generate a high power beam for example for ADS applications; 1GeV/10MW cyclotron seems feasible; fundamental limit at 1GeV energy
- the PSI accelerator delivers 1.3MW beam power upgrade to 1.8MW is under work; average reliability is 90-94%; ~25 trips per day (2008); grid-to-beam power conversion efficiency is ~15%; 30%-40% seems possible
- not mentioned: machine interlock system; infrastructure and auxiliary systems in context of activation; licensing of facility; thermomechanical and fluid-dynamics problems of targets, absorbers, dump

Thank you for your attention! many thanks to the PSI cyclotron team: S.Adam, A.Adelmann, B.Amrein, Ch.Baumgarten, M.Bopp, K.Deiters, R.Dölling, P.A.Duperrex, H.R.Fitze, A.Fuchs, J.Grillenberger, D.Götz, R.Kan, D.Kiselev, M.Humbel, A.Mezger, D.Reggiani, M.Schneider, S.Teichmann, M.Wohlmuther, J.Yang, H.Zhang + many others...